Dylan Gorman

Profile

Physicist interested in applying quantitative skills to study data-intensive, real world problems.

- Background Experimental quantum information processing
- **Skills** Statistical analysis of data, numerical programming, Python, SQL, JSON, numpy, scipy, GNU Scientific Library, data modeling, technical writing, oral presentation

Education

May 2017 Ph.D, Physics, University of California, Berkeley.

- Developed graphing program with PyQtGraph and PyQt for plotting experimental data in real time (https://github.com/HaeffnerLab/RealSimpleGrapher)
- Developed Python package for solving electrostatic properties of microfabricated ion traps (https://github.com/HaeffnerLab/trapsim/tree/master/gapless)
- Maintained group experimental code git repository
- Wrote Python programs to read in raw data and fit to theoretical models using LMFIT and Scipy.optimize
- Simulated quantum information processing experiments using the QuTIP Python library
- Used Bayesian methods to estimate model parameters from experimental data
- Linux systems administrator for the lab. Deployed and maintained central Ubuntu server for the lab which functioned as the central data repository
- 2013 **M.A., Physics**, *University of California*, Berkeley.
 - Taught techniques in experimental data analysis to undergraduate physics students
- 2009 **A.B., Physics**, *University of California*, Berkeley.
 - Built C and Python code to numerically optimize control of quantum systems via a gradient-descent algorithm.

Selected publications

- Implications of surface noise for the motional coherence of trapped ions
 I. Talukdar, D. Gorman, et al.
 Phys. Rev. A 93, 043415 (2016)
- Polarization of electric-field noise near metallic surfaces
 P. Schindler, D. Gorman, N. Daniilidis, H. Häffner
 Phys. Rev. A 92 013414 (2015)
- Overcoming dephasing noise with robust optimal control D. Gorman, K. C. Young, K. Birgitta Whaley. Phys. Rev. A 86, 012317, (2012)